feat: Implement Auto-Tagging Settings and MusicBrainz integration
- Added AutoTaggingSettings component for configuring auto-tagging preferences. - Integrated localStorage for saving user preferences and options. - Developed useAutoTagging hook for fetching and applying metadata from MusicBrainz. - Created MusicBrainz API client for searching and retrieving music metadata. - Enhanced metadata structure with additional fields for tracks and albums. - Implemented rate-limiting for MusicBrainz API requests. - Added UI components for user interaction and feedback during the tagging process.
This commit is contained in:
@@ -123,3 +123,85 @@ export function useOptimalImageSize(
|
||||
const divisions = [60, 120, 240, 400, 600, 1200];
|
||||
return divisions.find(size => size >= optimalSize) || 1200;
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract dominant color from an image
|
||||
* @param imageUrl - URL of the image to analyze
|
||||
* @returns Promise that resolves to CSS color string (rgb format)
|
||||
*/
|
||||
export async function extractDominantColor(imageUrl: string): Promise<string> {
|
||||
return new Promise((resolve, reject) => {
|
||||
try {
|
||||
const img = document.createElement('img');
|
||||
img.crossOrigin = 'anonymous';
|
||||
|
||||
img.onload = () => {
|
||||
try {
|
||||
const canvas = document.createElement('canvas');
|
||||
const ctx = canvas.getContext('2d');
|
||||
if (!ctx) {
|
||||
resolve('rgb(25, 25, 25)'); // Fallback dark color
|
||||
return;
|
||||
}
|
||||
|
||||
canvas.width = img.width;
|
||||
canvas.height = img.height;
|
||||
ctx.drawImage(img, 0, 0);
|
||||
|
||||
// Simple dominant color extraction
|
||||
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||||
const data = imageData.data;
|
||||
let r = 0, g = 0, b = 0;
|
||||
|
||||
// Sample points across the image (for performance, not using all pixels)
|
||||
const sampleSize = Math.max(1, Math.floor(data.length / 4000));
|
||||
let sampleCount = 0;
|
||||
|
||||
for (let i = 0; i < data.length; i += 4 * sampleSize) {
|
||||
r += data[i];
|
||||
g += data[i + 1];
|
||||
b += data[i + 2];
|
||||
sampleCount++;
|
||||
}
|
||||
|
||||
r = Math.floor(r / sampleCount);
|
||||
g = Math.floor(g / sampleCount);
|
||||
b = Math.floor(b / sampleCount);
|
||||
|
||||
// Adjust brightness to ensure readability
|
||||
const brightness = (r * 299 + g * 587 + b * 114) / 1000;
|
||||
|
||||
// For very light colors, darken them
|
||||
if (brightness > 200) {
|
||||
const darkFactor = 0.7;
|
||||
r = Math.floor(r * darkFactor);
|
||||
g = Math.floor(g * darkFactor);
|
||||
b = Math.floor(b * darkFactor);
|
||||
}
|
||||
|
||||
// For very dark colors, lighten them slightly
|
||||
if (brightness < 50) {
|
||||
const lightFactor = 1.3;
|
||||
r = Math.min(255, Math.floor(r * lightFactor));
|
||||
g = Math.min(255, Math.floor(g * lightFactor));
|
||||
b = Math.min(255, Math.floor(b * lightFactor));
|
||||
}
|
||||
|
||||
resolve(`rgb(${r}, ${g}, ${b})`);
|
||||
} catch (error) {
|
||||
console.error('Error extracting color:', error);
|
||||
resolve('rgb(25, 25, 25)'); // Fallback dark color
|
||||
}
|
||||
};
|
||||
|
||||
img.onerror = () => {
|
||||
resolve('rgb(25, 25, 25)'); // Fallback dark color
|
||||
};
|
||||
|
||||
img.src = imageUrl;
|
||||
} catch (error) {
|
||||
console.error('Error loading image for color extraction:', error);
|
||||
resolve('rgb(25, 25, 25)'); // Fallback dark color
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user